What Materials Informatics Looks Like in the Modern R&D Lab

The Modern Materials Science and Chemistry Lab

Industry success now more than ever is being dictated by the ability to continuously develop innovative new materials and chemicals, and companies are looking to Materials Informatics solutions as the key.

What is Materials Informatics? Materials Informatics (MI) is the modern approach to materials discovery and product development that is grounded in data-driven strategies and advanced computational techniques. MI combines elements of materials science, data science, and scientific computing to develop new materials faster, cheaper, and more efficiently.

MI can be applied to a variety of use cases, including: Property Prediction, Materials Discovery, Materials Development, Formulation Optimization, Structure Generation, Materials Compatibility, Materials Safety, Surrogate Modeling, Text Data Mining, Data Management, Data Augmentation, Automated Data Analysis, and Literature and Patent Search.

However, Material Informatics is more than applying a new technology or buying a new platform. Effectively implemented MI transforms people, processes—and technology.

Below is what MI in the modern R&D lab looks like.

Download PDF

Enthought | AI and Machine Learning Driven Solutions

Integration of AI and ML into workflows to increase efficiency and speed.

Traditional R&D processes involve time-consuming and resource intensive trial-and-error approaches. MI techniques can significantly streamline research processes through optimized workflows for greater efficiency and speed. With AI and machine learning (ML)-driven modeling, researchers can predict material properties and behaviors, taking a more efficient path in research and product development. This leads to a reduction in costly and lengthy trial iterations, expediting the overall research timeline and time to market.

Enthought | Digital Skills for Scientists

R&D scientists with strong digital skills in addition to domain expertise.

The modern lab is data-driven and scientists must have strong digital skills to turn data into a competitive advantage. Scientists trained in AI/ML and data analytics can transform product development workflows to make them far more productive. With digital proficiency, they can create data-driven research methodologies, optimize experimental design, and innovate faster than otherwise possible. R&D leadership should invest in cultivating digital leaders in their labs to drive innovation and increase productivity.

Learn how top materials company Idemitsu transformed their scientists through Enthought's unique Materials Informatics Acceleration Program.

Enthought | Digital Transformation for Science

Flexible and scalable digital tools that enable scientific innovation.

The complexities of scientific data and processes require digital tools that are flexible and adaptable. MI tools should not only be purpose-built to understand how researchers use scientific data, they should be flexible to adapt to the iterative nature of experimentation itself. Whether dealing with complex materials characterization data or exploring novel materials systems, the solution must adapt to the scientific discovery process as well as seamlessly scale with constant new and unique challenges. Labs need a secure yet flexible R&D platform with a clean, unified interface to access all their data, no matter where it’s stored, analyze data using familiar tools, seamlessly share assets with colleagues, and build and deploy custom MI applications with minimal IT overhead.

Learn about Enthought Edge, the cloud-native platform purpose-built for R&D and complex scientific data.

Looking to accelerate your research by leveraging Material Informatics? Enthought understands the complexities of scientific data and can help. Contact us to connect with one of our experts.

 

DOWNLOAD THIS RESOURCE (PDF)

Explore more: Blogs and Resources

Share this article:

Related Content

Enthoughtが定義する、製薬会社の研究開発ラボにおける真のDX

Enthought GKチームは、東京で開催されたライフサイエンスカンファレンス「ファーマIT&デジタルヘルスエキスポ2022」に出展し、技術的な見識と市場成長の活性化を求めて集まる製薬業界のリーダーたちと会談しました。三日間の会期中に200社が出展し、6700人以上の参加者が集まりました。 デジタルトランスフォーメーションが主要テーマである本展示会は、当社のターゲットとする企業に、製薬業界の新薬開発を加速させる当社のサービスを

Read More

科学における大規模言語モデルの重要性

OpenAIのChatGPTやGoogleのBardなど、大規模言語モデル(LLM)は自然言語で人と対話する能力において著しい進歩を遂げました。 ユーザーが言葉で要望を入力すれば、LLMは「理解」し、適切な回答を返してくれます。

Read More

ライフサイエンス分野におけるデジタル化拡大の課題

研究開発におけるイノベーションの規模拡大は、ラボか…

Read More

Top 5 Takeaways from the American Chemical Society (ACS) 2023 Fall Meeting: R&D Data, Generative AI and More

By Mike Heiber, Ph.D., Di…

Read More

Life Sciences Labs Optimize with New Digital Technologies and Upskilling

Labs are resetting the tr…

Read More

Real Scientists Make Their Own Tools

There’s a long history of…

Read More

From Data to Discovery: Exploring the Potential of Generative Models in Materials Informatics Solutions

Generative models can be used in many more areas than just language generation, with one particularly promising area: molecule generation for chemical product development.

Read More

7 Pro-Tips for Scientists: Using LLMs to Write Code

Scientists gain superpowe…

Read More

The Importance of Large Language Models in Science Even If You Don’t Work With Language

OpenAI's ChatGPT, Google's Bard, and other similar Large Language Models (LLMs) have made dramatic strides in their ability to interact with people using natural language....

Read More

4 Reasons to Learn Xarray and Awkward Array—for NumPy and Pandas Users

You know it. We know it. …

Read More