Enthought Announces Formation of Digital Transformation, Materials Science Advisory Boards

Austin, TX – June 15, 2021 – Enthought, the leading provider of technologies and services that deliver digital innovation to science-driven companies, is experiencing rapid growth as companies look to accelerate their adoption of new technologies, such as artificial intelligence and machine learning, in response to COVID-19. In support of Enthought’s growth, strategic vision and expansion of the compelling solutions provided to customers, the company today announced it has formed two new Advisory Boards for its Digital Transformation and Materials Science groups and the participation of four world-class experts to serve as advisors.

The role of each Board is to provide strategic guidance on Enthought’s go-to-market priorities, and to help deliver innovative and best-of-breed solutions to its far-reaching roster of internationally recognized science-based customers.

“I am pleased to announce the additions of the Digital Transformation and Materials Science Advisory Boards as we continue to build momentum and capitalize on the tremendous market opportunity in the digitalization of scientific innovation,” said Bill Cowan, President at Enthought. “The breadth and depth of the Boards’ collective expertise will no doubt drive transformative results for our customers and Enthought.”

The Digital Transformation Advisory Board is chaired by Dr. Michael Connell, Chief Operating Officer and Chief Digital Transformation Officer at Enthought. The Board’s inaugural members include Dr. Bryan Moser, Academic Director of Massachusetts Institute of Technology’s System Design and Management (SDM) Program; and Dr. Bernie Jaworski, Peter F. Drucker Chair in Management and the Liberal Arts at the Drucker School of Management, Claremont Graduate University.

“In a post-pandemic world, digital transformation means more than just technology adoption. To form a fully-realizable digital transformation strategy that gives your company the competitive edge, change must be foundational and extend to your employees – their skills, behaviors, mindsets and processes,” said Dr. Michael Connell, COO, CDxO, Enthought. “At Enthought, our customer success stories reinforce the power of applying digital transformation initiatives from the ground-up. I am excited to work with the Board to continue to help science-driven companies cultivate their digital DNA and empower them with technologies that enable future agility and innovation.”

The Materials Science Advisory Board is chaired by Dr. Chris Farrow, Vice President of Materials Science Solutions at Enthought. The Board’s inaugural members include Dr. Patrick Spicer, Associate Professor at University of New South Wales’ School of Chemical Engineering; and Dr. Roger Bonnecaze, the William and Bettye Nowlin Chaired Professor in the McKetta Department of Chemical Engineering at the University of Texas at Austin.

“I am honored to chair the Materials Science Board, and look forward to collaborating with other like-minded experts in the field to advance Enthought’s mission of bringing much needed digital innovation capabilities to materials science companies,” said Dr. Chris Farrow, VP, Materials Science Solutions, Enthought.

Share this article:

Related Content

産業用の材料と化学研究開発におけるLLMの活用

大規模言語モデル(LLM)は、すべての材料および化学研究開発組織の技術ソリューションセットに含むべき魅力的なツールであり、変革をもたらす可能性を秘めています。

Read More

デジタルトランスフォーメーション vs. デジタルエンハンスメント: 研究開発における技術イニシアティブのフレームワーク

生成AIの登場により、研究開発の方法が革新され、前例のない速さで新しい科学的発見が生まれる時代が到来しました。研究開発におけるデジタル技術の導入は、競争力を向上させることが証明されており、企業が従来のシステムやプロセスに固執することはリスクとなります。デジタルトランスフォーメーションは、科学主導の企業にとってもはや避けられない取り組みです。

Read More

R&D イノベーションサミット2024「研究開発におけるAIの大規模活用に向けて – デジタル環境で勝ち残る研究開発組織への変革」開催レポート

去る2024年5月30日に、近年注目のAIの大規模活用をテーマに、エンソート主催のプライベートイベントがミッドタウン日比谷6FのBASE Qで開催されました。

Read More

科学研究開発における小規模データの最大活用

多くの伝統的なイノベーション主導の組織では、科学データは特定の短期的な研究質問に答えるために生成され、その後は知的財産を保護するためにアーカイブされます。しかし、将来的にデータを再利用して他の関連する質問に活用することにはあまり注意が払われません。

Read More

デジタルトランスフォーメーションの実践

デジタルトランスフォーメーションは、組織のデジタル成熟度を促進し、ビジネス価値を継続的に提供するプロセスです。真にビジネスを変革するためには、イノベーションを通じて新しい可能性を発見し、企業が「デジタルDNA」を育む必要があります。

Read More

科学研究開発リーダーが知っておくべき AI 概念トップ 10

近年のAIのダイナミックな環境で、R&Dリーダーや科学者が、企業の将来を見据えたデータ戦略をより効果的に開発し、画期的な発見に向けて先導していくためには、重要なAIの概念を理解することが不可欠です。

Read More

科学における大規模言語モデルの重要性

OpenAIのChatGPTやGoogleのBardなど、大規模言語モデル(LLM)は自然言語で人と対話する能力において著しい進歩を遂げました。 ユーザーが言葉で要望を入力すれば、LLMは「理解」し、適切な回答を返してくれます。

Read More

ライフサイエンス分野におけるデジタル化拡大の課題

研究開発におけるイノベーションの規模拡大は、ラボか…

Read More

ITは科学の成功にいかに寄与するか

科学と工学の分野においてAIと機械学習の重要性が高まるなか、企業が革新的であるためには、研究開発部門とIT部門のリーダーシップが上手く連携を取ることが重要になっています。予算やポリシー、ベンダー選択が不適切だと、重要な研究プログラムが不必要に阻害されることがあります。また反対に、「なんでもあり」という姿勢が貴重なリソースを浪費したり、組織を新たなセキュリティ上の脅威にさらしたりすることもあります。

Read More

科学データを活用して発見とイノベーションを加速する

デジタルトランスフォーメーションがもたらす変革の中心にはデータがあります。研究開発におけるデジタルトランスフォーメーションでは科学データを取り扱いますが、科学データには他の業務データと異なる特徴があり、取り扱い方に注意を払う必要があります。

Read More