Problem Solving with Data

For those just getting started with advanced scientific computing techniques, here are four steps to efficiently turn data into decisions with business value.

Author: Ryan Swindeman, Scientific Software Developer

In the 4 minute video below, Enthought scientist Ryan Swindeman puts data into context as foundational to any digital transformation initiative, setting out four fundamental steps for data to science problems.

1. Data Preparation (or Data Conditioning): This is the essential, first step in a digital project. Data must be clean and accessible. Access to data must be quick, and reliable. The data must be cataloged or categorized, so that there is consistency in how it is reached and integrated into projects. Data preparation must be in service of addressing a business need or objective, to solve a specific problem, and not be a case of ‘we need to organize our data’.

2. Data Visualization: Visualizing data is important as a starting point to understanding a problem. This involves looking at the data in its native domain, identifying trends, and from there possibly transforming it to a different domain, cross-plotting to look for relationships, or running statistics as a way to discover features. Visualization is also a reliable way to increase efficiency in problem-solving. The understanding gained through visualization is essential for deep learning – if you do not understand the underlying trends or relationships in the data, you will not understand the outcomes produced by any AI/ML/Deep Learning.

3. Modeling and Optimization: This step uses the underlying dynamics or physics of the problem, and the applications are endless. (In geophysics, this is often called forward modeling and inversion.) Most critically, modeling and optimization allows scientists to prove (or disprove) hypotheses very quickly, enabling teams to test, iterate and change strategy, often resulting in problems being solved quickly.

4. AI/ML/Deep Learning: These advanced computing techniques are related, and differ in important ways. Unlike modeling and optimization, or inversion (which is a physics-based approach), AI/ML/Deep Learning is a data-driven approach. These techniques are beneficial if forward modeling and optimization are not possible because of a lack of understanding of the underlying physics, or if the physics leads to too many approximations. The problem-solving and analytical power of AI/ML/Deep Learning becomes obvious in pattern recognition or texture analysis.

These four steps provide a robust sequence for solving problems using data, whether a small set or large, fundamental to digital transformation projects.

 

About the Author

Ryan Swindeman, Scientific Software Developer, holds a M.S. in geophysics from the University of Texas at Austin and a B.S. in physics from the University of Illinois at Urbana-Champaign, with graduate research in computational seismology.

Share this article:

Related Content

研究開発組織の変革を成功させるためのパートナー選び

現在の競争が激しいR&D環境において、適切なテクノロジーパートナーを選ぶことは、組織にとって最も重要な意思決定の1つです。理想的なパートナーとは、単なるツールベンダーやシステムインテグレーターではなく、生産性を向上させ、イノベーションを加速し、競争力を引き出す解決策を提供する科学的な専門知識と戦略的な洞察を兼ね備えた「変革の同志」です。

Read More

「AIスーパー・モデル」が材料研究開発を革新する

近年、計算能力と人工知能の進化により、材料科学や化学の研究・製品開発に変革がもたらされています。エンソートは常に最先端のツールを探求しており、研究開発の新たなステージに引き上げる可能性を持つマテリアルズインフォマティクス(MI)分野での新技術を注視しています。

Read More

デジタルトランスフォーメーション vs. デジタルエンハンスメント: 研究開発における技術イニシアティブのフレームワーク

生成AIの登場により、研究開発の方法が革新され、前例のない速さで新しい科学的発見が生まれる時代が到来しました。研究開発におけるデジタル技術の導入は、競争力を向上させることが証明されており、企業が従来のシステムやプロセスに固執することはリスクとなります。デジタルトランスフォーメーションは、科学主導の企業にとってもはや避けられない取り組みです。

Read More

産業用の材料と化学研究開発におけるLLMの活用

大規模言語モデル(LLM)は、すべての材料および化学研究開発組織の技術ソリューションセットに含むべき魅力的なツールであり、変革をもたらす可能性を秘めています。

Read More

材料科学研究開発ラボのデジタルトランスフォーメーション

「デジタルトランスフォーメーション」「機械学習」「…

Read More

科学研究開発における効率の重要性

今日、新しい発見や技術が生まれるスピードは驚くほど速くなっており、市場での独占期間が大幅に短縮されています。企業は互いに競争するだけでなく、時間との戦いにも直面しており、新しいイノベーションを最初に発見し、特許を取得し、市場に出すためにしのぎを削っています。

Read More

R&D イノベーションサミット2024「研究開発におけるAIの大規模活用に向けて – デジタル環境で勝ち残る研究開発組織への変革」開催レポート

去る2024年5月30日に、近年注目のAIの大規模活用をテーマに、エンソート主催のプライベートイベントがミッドタウン日比谷6FのBASE Qで開催されました。

Read More

科学研究開発における小規模データの最大活用

多くの伝統的なイノベーション主導の組織では、科学データは特定の短期的な研究質問に答えるために生成され、その後は知的財産を保護するためにアーカイブされます。しかし、将来的にデータを再利用して他の関連する質問に活用することにはあまり注意が払われません。

Read More

デジタルトランスフォーメーションの実践

デジタルトランスフォーメーションは、組織のデジタル成熟度を促進し、ビジネス価値を継続的に提供するプロセスです。真にビジネスを変革するためには、イノベーションを通じて新しい可能性を発見し、企業が「デジタルDNA」を育む必要があります。

Read More

科学研究開発リーダーが知っておくべき AI 概念トップ 10

近年のAIのダイナミックな環境で、R&Dリーダーや科学者が、企業の将来を見据えたデータ戦略をより効果的に開発し、画期的な発見に向けて先導していくためには、重要なAIの概念を理解することが不可欠です。

Read More