The process of materials discovery is complex and iterative, requiring a level of expertise to be done effectively. Materials workflows that require human judgement present a specific challenge to the discovery process, which can be leveraged as an opportunity to introduce digital technologies.
In the lab, many tasks require manual data collection and judgment. And even with an expert running the task, results (as well as the decisions based on them) can be highly variable. One expert will make decisions that deviate significantly from those of their peers and even from their own prior decisions. This variability creates risk and can impact the businesses bottom line. For example:
- Unnecessary time and expertise spent on routine tasks that can be standardized– pulling experts away from the high-value work that requires their more advanced skills and knowledge
- Errors in judgment that can lead to rework, lost sales and/or an impact on the company’s reputation
- Processes that provide no systematic mechanism to detect or improve the situation over time
Even simple algorithms can augment, improve, or replace human judgement – providing superior consistency and greater accuracy.
In Materials Science, labs can now use computer intelligence to replace human judgment in many places, freeing up experts to focus on how to solve the big research questions. Whether it is feature detection, text extraction, or search and sort based on standard criteria, there are ample opportunities to incorporate artificial intelligence (AI) into existing workflows.
Laboratories looking to leverage digital technologies to become more efficient and to unlock new capabilities should consider how image processing and analysis can fit into their materials workflows. While computer vision (CV) is ubiquitous and flexible, it can be challenging to apply it to scientific problems. For new and cutting-edge problems, a digital solution is likely to require programming skills, domain expertise and time; in short, a significant investment. By selecting the correct process to improve or automate, the return on investment more than warrants the cost and effort.
Image Processing & Automation In Practice
For a customer who develops thin-film electronic materials, implementing a CV solution was transformative. Their previous process of manual optical characterization of patterned films was a slow, multi-step process. The expert-driven process of identifying and measuring features seemed to properly indicate whether a particular patterning process was successful, but the subjectivity and variability of the results would lead to hidden errors that would not be discovered until later in the materials development process.
Using a traditional CV to find regular features, and deep learning for trickier issues where human judgement would normally be applied, they were able to ensure more consistent characterization resulting in improved product development decisions and reduction in verification tests. Not only were there cost savings from time and materials, but they were also able to capture more business in an emerging and growing market.
Complex Processes Require a Specialized Approach
That said, there are cases where a process or measurement might be too difficult to automate entirely. In these cases, leveraging machine learning in materials science can partially capture nuances of human judgement and assist in the interpretation. By definition, machine learning models learn from data and improve with training. The first step is to train a model on the data you have to identify and classify the image features an expert usually interprets. This can be types of defects, normal versus abnormal features, or regions of interest requiring additional analysis. Depending on the problem, you may be able to use a simple model, such as Random Forest, or may need something more sophisticated, like Deep Learning. With a suitable model in place, the next step is to teach it.
AI in Materials Science
The key to machine learning for materials discovery is integrating AI into the existing, human-driven workflow. First as an assistant, and eventually as an expert. This augmented workflow will be an improvement over the existing manual process because:
- The model has a higher percentage of success, particularly when detecting and classifying common features.
- When the model gets something wrong, the human operator will correct it, and by doing so, the model will capture the operator’s judgement.
- The more the model is corrected, the closer it will get to being able to provide a consensus judgement call moving forward. As the model masters the complex detection tasks, the human judgement required for those tasks will decrease, speeding up the process or measurement.
- Eventually, the model will be able to handle all but the most infrequent of cases. And if the model provides an uncertainty measure, it can be used to alert a human operator when to intervene.
At Enthought, we’ve applied this approach in our custom solutions, and also in our products for energy exploration, SubsurfaceAI and the Thin Section Tool.
We’ve found that materials labs that can leverage the power of digital with computer vision and machine learning can see massive returns on investment via process improvements across the entire lab. For example:
- Increased Efficiency– When critical or routine measurements are performed faster, the lab as a whole can operate more efficiently
- Increased Operator Satisfaction– Reducing redundancies in workflows enables a more fulfilling work experience
- Improved Processes– Experts who often get called in for their judgement are now spending more time on improving the process, rather than running it
- Reduced or Eliminated Risk– Business risks from process inconsistencies are reduced or eliminated entirely
- Increased Digital Awareness– Increased awareness and education within the lab, helping to inform future transformation and automation priorities
By transforming workflows, labs are not only improving accuracy and efficiency, they are also enabling new innovations. Machine learning in materials discovery enables the automation of human-driven processes, helping scientists develop a sense for how appropriate technology can improve their laboratory and their work. The outcomes are even further enhanced when those scientists have some ownership over the solution.
To learn more about how we turn scientists into digital leaders who drive laboratory innovation contact us today.
Related Content
「AIスーパー・モデル」が材料研究開発を革新する
近年、計算能力と人工知能の進化により、材料科学や化学の研究・製品開発に変革がもたらされています。エンソートは常に最先端のツールを探求しており、研究開発の新たなステージに引き上げる可能性を持つマテリアルズインフォマティクス(MI)分野での新技術を注視しています。
デジタルトランスフォーメーション vs. デジタルエンハンスメント: 研究開発における技術イニシアティブのフレームワーク
生成AIの登場により、研究開発の方法が革新され、前例のない速さで新しい科学的発見が生まれる時代が到来しました。研究開発におけるデジタル技術の導入は、競争力を向上させることが証明されており、企業が従来のシステムやプロセスに固執することはリスクとなります。デジタルトランスフォーメーションは、科学主導の企業にとってもはや避けられない取り組みです。
産業用の材料と化学研究開発におけるLLMの活用
大規模言語モデル(LLM)は、すべての材料および化学研究開発組織の技術ソリューションセットに含むべき魅力的なツールであり、変革をもたらす可能性を秘めています。
R&D イノベーションサミット2024「研究開発におけるAIの大規模活用に向けて – デジタル環境で勝ち残る研究開発組織への変革」開催レポート
去る2024年5月30日に、近年注目のAIの大規模活用をテーマに、エンソート主催のプライベートイベントがミッドタウン日比谷6FのBASE Qで開催されました。
科学研究開発における小規模データの最大活用
多くの伝統的なイノベーション主導の組織では、科学データは特定の短期的な研究質問に答えるために生成され、その後は知的財産を保護するためにアーカイブされます。しかし、将来的にデータを再利用して他の関連する質問に活用することにはあまり注意が払われません。
デジタルトランスフォーメーションの実践
デジタルトランスフォーメーションは、組織のデジタル成熟度を促進し、ビジネス価値を継続的に提供するプロセスです。真にビジネスを変革するためには、イノベーションを通じて新しい可能性を発見し、企業が「デジタルDNA」を育む必要があります。
科学研究開発リーダーが知っておくべき AI 概念トップ 10
近年のAIのダイナミックな環境で、R&Dリーダーや科学者が、企業の将来を見据えたデータ戦略をより効果的に開発し、画期的な発見に向けて先導していくためには、重要なAIの概念を理解することが不可欠です。
科学における大規模言語モデルの重要性
OpenAIのChatGPTやGoogleのBardなど、大規模言語モデル(LLM)は自然言語で人と対話する能力において著しい進歩を遂げました。 ユーザーが言葉で要望を入力すれば、LLMは「理解」し、適切な回答を返してくれます。
ITは科学の成功にいかに寄与するか
科学と工学の分野においてAIと機械学習の重要性が高まるなか、企業が革新的であるためには、研究開発部門とIT部門のリーダーシップが上手く連携を取ることが重要になっています。予算やポリシー、ベンダー選択が不適切だと、重要な研究プログラムが不必要に阻害されることがあります。また反対に、「なんでもあり」という姿勢が貴重なリソースを浪費したり、組織を新たなセキュリティ上の脅威にさらしたりすることもあります。
科学データを活用して発見とイノベーションを加速する
デジタルトランスフォーメーションがもたらす変革の中心にはデータがあります。研究開発におけるデジタルトランスフォーメーションでは科学データを取り扱いますが、科学データには他の業務データと異なる特徴があり、取り扱い方に注意を払う必要があります。