The Digital Maturity Report uses a matrix to evaluate organizations digital maturity, determining whether they are lagging, competitive or leading based on the 5-core elements of Digital Maturity; Digital Strategy, Digital Skills, Digital Tools, Data & Data Flow, and Data Infrastructure.
Digital Maturity, Applied.
Author: Charlie Cosad, M.Sc.
Is your organization delivering ongoing business impact through its digital initiatives?
Executives, managers and scientists alike often feel stuck or frustrated by a lack of progress at various points along their digital journeys, including false starts and dead ends. Based on recent experience collaborating with science-driven companies on their digital transformation initiatives and projects, we examined why, and found an insightful way to frame the issues through defining digital maturity.
Enthought has 20 years’ experience in scientific software development, associated training, and in recent years, collaborating on larger scale digital transformation projects. This experience led to the creation of a model for Digital Maturity, and a two part evaluation methodology. The methodology enables individuals within science-driven businesses to better understand and evaluate their organizations’ digital maturity, how it is affecting results, and where necessary, how to change strategy and tactics to get on track.
The 5 core elements of digital maturity are defined as; digital strategy, digital skills, digital tools, data & data flow, and data infrastructure. The first part of the Evaluation model is a self-evaluation survey, asking a set of questions designed to lead an individual through the core elements of digital maturity, scoring their organizations’ performance in each. The second part of the model enables an in-depth analysis through a report aligned to the survey, guiding scoring and associated issues for each of the 5 elements.
Self-evaluation and a Deeper Dive
The survey investigates each of the 5 areas of digital maturity with a single question on each, leading with Digital Strategy. For senior leaders, insights can come at the strategic level, for example ‘Why can’t we scale our individual project successes, which are strong?’.
When the survey is given across an organization – to scientists and engineers, lab and function managers – inconsistencies in responses can be insightful. For example ‘Why is it IT thinks we are in a leadership position when the engineers are saying they can’t access the data they need to innovate, and the lab is still typing into Excel?’
The second part of the evaluation model, the Report, enables an in-depth analysis through a report describing in detail different levels of digital maturity in each of the 5 core elements, with the subsequent consequences for business performance. The report can be used to score an organizations’ digital maturity into three categories; Lagging, Competitive, and Leading.
Those who believe they are ‘Lagging’ behind their peers in industry can do a deeper, more structured dive into why, auditing their current strategy and plans. Individuals within lagging organizations often feel frustration, but find it difficult to understand these frustrations beyond the immediate problems. Those who are ‘Competitive’ can use the tools to investigate the gaps preventing them from becoming a leader. ‘Leading’ companies have clear strategic vision, are advancing digital skills, have strong adoption of digital tools with a strong data culture. These organizations are digitally mature, and lead their peers in the industry, yet they understand that leadership is always under threat. For these leading organizations, the model can be highly informative, for example on business risks.
Corporate; Built on Digital Transformation Experience
Enthought created the digital maturity model during multi-year digital transformation projects with materials, chemistry and life sciences companies. A number of the companies are now 3-4 years into their digital transformation journeys, and have discovered the importance of integrated plans that cover the 5 elements of the model, plans that deliver continuous business value.
Mitsunobu Koshiba, former CEO and Chairman of JSR, said, “Enthought probed to find the pivot point that improved our process. They built the right AI tools and developed [the] right skills in our scientists. We got immediately actionable value.”
Laboratories; Experience Delivering Results Through Applied Digital Innovation
Where digital innovation is enabled – going beyond digitizing data and digitalizing tools and processes – transformational results become possible. Existing processes are reinvented, freeing experts to focus on the science, enabling new business models for customers, both internal to the company and ultimately, external ones.
Scaling up R&D lab formulations to production scale is a common challenge, extending to include Design of Experiments (DoE). The Digital Maturity elements can inform developing plans to transform lab workflows. In one example a specialty chemical company wanted to remove a bottleneck in a polymer scale up process, with applied digital innovation ultimately delivering $90k in cost savings per formulation and in another example, a GUI application took weeks off of P&Gs chemicals mixing workflow.
For those who understand the power of applied digital innovation, the Digital Maturity Evaluation methodology is for you. Download the report here, or start the survey now.
About the Author
Charlie Cosad holds a B.Sc. in Mechanical Engineering from Syracuse University and a M.Sc. in Aerospace & Mechanical Sciences from Princeton University, where his research focused on gas dynamics, compressible flows, and high speed flight.
Related Content
「AIスーパー・モデル」が材料研究開発を革新する
近年、計算能力と人工知能の進化により、材料科学や化学の研究・製品開発に変革がもたらされています。エンソートは常に最先端のツールを探求しており、研究開発の新たなステージに引き上げる可能性を持つマテリアルズインフォマティクス(MI)分野での新技術を注視しています。
デジタルトランスフォーメーション vs. デジタルエンハンスメント: 研究開発における技術イニシアティブのフレームワーク
生成AIの登場により、研究開発の方法が革新され、前例のない速さで新しい科学的発見が生まれる時代が到来しました。研究開発におけるデジタル技術の導入は、競争力を向上させることが証明されており、企業が従来のシステムやプロセスに固執することはリスクとなります。デジタルトランスフォーメーションは、科学主導の企業にとってもはや避けられない取り組みです。
産業用の材料と化学研究開発におけるLLMの活用
大規模言語モデル(LLM)は、すべての材料および化学研究開発組織の技術ソリューションセットに含むべき魅力的なツールであり、変革をもたらす可能性を秘めています。
R&D イノベーションサミット2024「研究開発におけるAIの大規模活用に向けて – デジタル環境で勝ち残る研究開発組織への変革」開催レポート
去る2024年5月30日に、近年注目のAIの大規模活用をテーマに、エンソート主催のプライベートイベントがミッドタウン日比谷6FのBASE Qで開催されました。
科学研究開発における小規模データの最大活用
多くの伝統的なイノベーション主導の組織では、科学データは特定の短期的な研究質問に答えるために生成され、その後は知的財産を保護するためにアーカイブされます。しかし、将来的にデータを再利用して他の関連する質問に活用することにはあまり注意が払われません。
デジタルトランスフォーメーションの実践
デジタルトランスフォーメーションは、組織のデジタル成熟度を促進し、ビジネス価値を継続的に提供するプロセスです。真にビジネスを変革するためには、イノベーションを通じて新しい可能性を発見し、企業が「デジタルDNA」を育む必要があります。
科学研究開発リーダーが知っておくべき AI 概念トップ 10
近年のAIのダイナミックな環境で、R&Dリーダーや科学者が、企業の将来を見据えたデータ戦略をより効果的に開発し、画期的な発見に向けて先導していくためには、重要なAIの概念を理解することが不可欠です。
科学における大規模言語モデルの重要性
OpenAIのChatGPTやGoogleのBardなど、大規模言語モデル(LLM)は自然言語で人と対話する能力において著しい進歩を遂げました。 ユーザーが言葉で要望を入力すれば、LLMは「理解」し、適切な回答を返してくれます。
ITは科学の成功にいかに寄与するか
科学と工学の分野においてAIと機械学習の重要性が高まるなか、企業が革新的であるためには、研究開発部門とIT部門のリーダーシップが上手く連携を取ることが重要になっています。予算やポリシー、ベンダー選択が不適切だと、重要な研究プログラムが不必要に阻害されることがあります。また反対に、「なんでもあり」という姿勢が貴重なリソースを浪費したり、組織を新たなセキュリティ上の脅威にさらしたりすることもあります。
科学データを活用して発見とイノベーションを加速する
デジタルトランスフォーメーションがもたらす変革の中心にはデータがあります。研究開発におけるデジタルトランスフォーメーションでは科学データを取り扱いますが、科学データには他の業務データと異なる特徴があり、取り扱い方に注意を払う必要があります。