Digital-centric R&D Laboratories

To have a transformative impact, labs must reinvent workflows through digital technologies and skills, adopting a strong data culture. Innovation through digital-centric systems confidently produces new materials that meet customer specifications orders of magnitude faster than before, enabling broader business transformation. 

Authors: Chris Farrow, Ph.D., VP Materials Science Solutions and Michael Heiber, Manager, Materials Informatics

Leveling Up

Digital technologies are having a significant impact on R&D labs across all technology driven industries, in particular in chemistry and materials science. The bigger challenge is how to evolve R&D labs in a way that delivers value early and continuously, while creating an environment for innovation that can deliver orders of magnitude improvements in performance, and ultimately, business value.  

The white paper ‘The Journey to Digital-centric Chemicals and Materials Laboratories’ posits that the transformation of R&D labs takes place in a well planned journey through five distinct levels, taking a holistic approach to data capture and usage, infrastructure and digital processes, introducing increasing levels of autonomy.

The levels are: 

  • Level 1: The Human-centric Lab
  • Level 2: The Data-informed Lab
  • Level 3: The Data-driven Lab
  • Level 4: The Transforming Lab
  • Level 5: The Digital-centric Autonomous Lab

The Transformed R&D Lab 

Transforming a lab in today’s digital world is a journey. Scientists must acquire new skills, adopt a strong data culture and be empowered to bring digital innovation into the lab. Digital technologies that can rapidly evolve in lock-step with the lab must be adopted. An R&D system that is too rigid, inefficient, or adopted as a quick fix must be avoided, as it will be incapable of broader transformation and unable to adapt as business needs change. 

When the lab arrives at a point where scientists can dial-in desired material or chemical properties, and samples with those properties are produced quickly and automatically, there has been a true transformation. It is now possible to develop highly customized products for each customer, bring speciality services into new markets, and stave off commoditization. 

From there, the business must decide how to leverage this new capability. The challenge flips from a technical one of creating samples, to a business one of scaling production capacity, creating new customer-focussed digital sales tools, expanding into new markets and generating increased revenue – a good set of challenges to have. 

Key to advancing to a Digital-centric Autonomous Lab is that technological and cultural changes progress concurrently. Technological initiatives generate value, while cultural and organizational initiatives accelerate value, increasing the potential beyond incremental steps, and ensuring a foundation for future progress. Once a given level has been mastered, the lab is positioned to move to the next. 

At the final level, entirely new possibilities can be explored and a new future envisioned in line with broader digital business transformation goals. 

Access the white paper by registering here.

About the Authors

Chris Farrow, VP Materials Science Solutions, holds a Ph.D. in physics from Michigan State University and degrees in physics and mathematics from the University of Nebraska.

Michael Heiber, Manager, Materials Informatics, holds a Ph.D. in polymer science from The University of Akron and a B.S. in materials science and engineering from the University of Illinois at Urbana-Champaign with expertise in polymers for optoelectronic applications.

Share this article:

Related Content

産業用の材料と化学研究開発におけるLLMの活用

大規模言語モデル(LLM)は、すべての材料および化学研究開発組織の技術ソリューションセットに含むべき魅力的なツールであり、変革をもたらす可能性を秘めています。

Read More

デジタルトランスフォーメーション vs. デジタルエンハンスメント: 研究開発における技術イニシアティブのフレームワーク

生成AIの登場により、研究開発の方法が革新され、前例のない速さで新しい科学的発見が生まれる時代が到来しました。研究開発におけるデジタル技術の導入は、競争力を向上させることが証明されており、企業が従来のシステムやプロセスに固執することはリスクとなります。デジタルトランスフォーメーションは、科学主導の企業にとってもはや避けられない取り組みです。

Read More

R&D イノベーションサミット2024「研究開発におけるAIの大規模活用に向けて – デジタル環境で勝ち残る研究開発組織への変革」開催レポート

去る2024年5月30日に、近年注目のAIの大規模活用をテーマに、エンソート主催のプライベートイベントがミッドタウン日比谷6FのBASE Qで開催されました。

Read More

科学研究開発における小規模データの最大活用

多くの伝統的なイノベーション主導の組織では、科学データは特定の短期的な研究質問に答えるために生成され、その後は知的財産を保護するためにアーカイブされます。しかし、将来的にデータを再利用して他の関連する質問に活用することにはあまり注意が払われません。

Read More

デジタルトランスフォーメーションの実践

デジタルトランスフォーメーションは、組織のデジタル成熟度を促進し、ビジネス価値を継続的に提供するプロセスです。真にビジネスを変革するためには、イノベーションを通じて新しい可能性を発見し、企業が「デジタルDNA」を育む必要があります。

Read More

科学研究開発リーダーが知っておくべき AI 概念トップ 10

近年のAIのダイナミックな環境で、R&Dリーダーや科学者が、企業の将来を見据えたデータ戦略をより効果的に開発し、画期的な発見に向けて先導していくためには、重要なAIの概念を理解することが不可欠です。

Read More

科学における大規模言語モデルの重要性

OpenAIのChatGPTやGoogleのBardなど、大規模言語モデル(LLM)は自然言語で人と対話する能力において著しい進歩を遂げました。 ユーザーが言葉で要望を入力すれば、LLMは「理解」し、適切な回答を返してくれます。

Read More

ライフサイエンス分野におけるデジタル化拡大の課題

研究開発におけるイノベーションの規模拡大は、ラボか…

Read More

ITは科学の成功にいかに寄与するか

科学と工学の分野においてAIと機械学習の重要性が高まるなか、企業が革新的であるためには、研究開発部門とIT部門のリーダーシップが上手く連携を取ることが重要になっています。予算やポリシー、ベンダー選択が不適切だと、重要な研究プログラムが不必要に阻害されることがあります。また反対に、「なんでもあり」という姿勢が貴重なリソースを浪費したり、組織を新たなセキュリティ上の脅威にさらしたりすることもあります。

Read More

科学データを活用して発見とイノベーションを加速する

デジタルトランスフォーメーションがもたらす変革の中心にはデータがあります。研究開発におけるデジタルトランスフォーメーションでは科学データを取り扱いますが、科学データには他の業務データと異なる特徴があり、取り扱い方に注意を払う必要があります。

Read More